Space Matter: What You Should Know About Dark Matter

Space Matter is a weekly column that delves into space science and the mechanics of spaceflight. From the latest discoveries in the universe around us to the fits and starts of rocket test flights, you’ll find analysis, discussion, and an eternal optimism about space and launching ourselves into the cosmos.
You’ve heard a lot about dark matter. You probably know it’s not something we can see (hence the name). But if it’s not observable, how do we know it’s there? How did we discover it? What exactly is dark matter?
What Is Dark Matter?
Dark matter is basically just that: matter that does not interact with or give off any type of electromagnetic radiation: no light, no x-rays, no infrared waves, nothing that we can either see or detect through any type of traditional direct observation. But scientists theorize that the universe’s mass consists of roughly 85% dark matter—in other words, only 1/5 of the mass of the universe is the stuff we can see, hear, touch, and measure directly.
If We Can’t See It, How Do We Know It’s There?
This is the million-dollar question: How do we know dark matter exists, if we can’t detect it through any normal method? Well, just because dark matter doesn’t interact with the electromagnetic spectrum doesn’t mean that other forces don’t act upon it, or that it doesn’t influence the makeup of the cosmos. We know dark matter exists because it interacts with gravity.
The ring seen in this image of galaxy cluster SDSS J1038+4849 is due to gravitational lensing. Photo: Courtesy of NASA/ESA/Hubble
Dark Matter’s Gravitational Effects
The galaxies in our universe are constantly in motion. That motion, and its characteristics, is determined by many factors, including the mass and energy within galaxies. The objects that are in galaxies—stars, planets, gas, plasma and more—are also in motion, rotating around the galaxy’s center. Think of our own solar system, with the Sun at its center, as a smaller example of this movement. In our (or any) solar system, the planets closest to the Sun move the fastest because the Sun acts upon them more strongly than it does the outer planets—the gravity of anything affects you more the closer you are to it. Yes, Mercury’s orbit takes less time than Jupiter’s, for example, because it’s closer to the Sun, but it also travels much faster in space. So, extending that logic, the stars and objects that are further away from a galaxy’s center (where most of its visible mass is clustered) should move much more slowly than anything that’s near it.
But that isn’t the case. Distance from center doesn’t seem to matter when it comes to the speed objects within galaxies travel. But rotation is determined by gravity, which is determined by mass. For galaxies to have the kind of mass that the actual galaxy rotation curve (the speed of stars versus their distance from the center) suggests (as opposed to the theoretical curve that we would predict, which would be consistent with how our own solar system works), there’s got to be a lot more mass than what we’re seeing—more than just stars, plasma/gas, and visible (or baryonic) matter. Otherwise, galaxies should be much, much brighter, filled with a lot more stars, gas, and plasma to account for this rotation speed.