Space Matter: Landing on Mars

Space Matter is a weekly column that delves into space science and the mechanics of spaceflight. From the latest discoveries in the universe around us to the fits and starts of rocket test flights, you’ll find analysis, discussion and an eternal optimism about space and launching ourselves into the cosmos.
I’ve discussed our trip to Mars, why we’re planning on going there—as opposed to Venus—and how we’re planning on getting there. But believe it or not, getting to Mars is relatively easy, given current technology. The rockets that will allow us to do it are already in their late stages of development. The crew capsules are also being developed. Orion, the craft NASA is building to eventually get us to the red planet, had its first unmanned test flight back in 2014. SpaceX is discussing sending its craft, Crew Dragon, around the moon (with two private citizens on board) at the end of 2018. We’re pretty reasonably certain we can get to Mars.
But how do we land on it?
You might think, well, we landed astronauts on the moon. Mars should be just as easy!
When we went to the moon, we took a separate craft, made only to operate in space and on the moon, the lunar module (LM). It was never intended to function within Earth’s gravity. It’s likely we’d do something similar for Mars. The fact is, we don’t want to take something designed to function within Earth’s atmosphere to the surface of a planet with much thinner atmosphere because of weight. When you’re heading to the Moon or Mars, you’re going very fast. You have to slow down enough between when you enter the atmosphere and when you land such that you don’t crash into the surface. Weight is everything (more weight equals more fuel required to slow down the craft for landing), and a craft designed to function only in space, which doesn’t have to withstand Earth’s atmospheric pressure, the stresses of launch, or the conflagration of reentry, is much lighter than one that has to function on Earth’s surface.
The lunar module on its way back from the moon, as seen through the Apollo 11 spacecraft Columbia. Photo: Courtesy of NASA
When the LM detached from the spacecraft and headed for the lunar surface, it used its descent engine to slow down as quickly as possible. But the gravity on Mars is much greater than that of the moon; that means that a spacecraft will be pulled much more quickly towards the red planet’s surface. As a result, any descent engine would have to work that much harder to slow the craft down before it slams into the planet’s surface. That’s a lot of fuel, and a lot of work to ask of an engine. Right now, we’re not quite sure of how to do it, given these constraints.